978. Molecular Polarisability: The Conformations of Acetanilide and Certain para-Substituted Acetanilides as Solutes in Benzene and Dioxan.

By M. J. Aroney, R. J. W. Le Fèvre, and A. N. Singh.
From considerations of polarity and polarisability it is concluded that the angle ϕ between the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}^{-} \mathrm{C}_{\mathrm{CO}}$ and the $\mathrm{N}-\mathrm{C}_{\mathrm{CO}}-\mathrm{O}$ plane is about 80° for acetanilide and its p-bromo-derivative in benzene, and within the range 65$85^{\circ}$ for these substances and for the related p-chloro- and p-methyl-acetanilide in dioxan.
In this paper we apply bond and group polarity and polarisability data to calculations of the dipole moments and molar Kerr constants corresponding to various conformations of acetanilide and certain of its para-substituted derivatives. We then compare such predictions with results from observations on solutions in benzene or dioxan, and thereby deduce the preferred orientations of the carbonyl groups relative to the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}-\mathrm{C}_{\mathrm{CO}}$ planes of the molecules concerned.

Experimental

Materials, Apparatus, etc.-The solutes were recrystallised immediately before use from aqueous alcohol, giving acetanilide, m. p. 114°, acetyl-p-toluidine, m. p. 153°, p-chloro-acetanilide, m. p. 179°, and p-bromoacetanilide, m. p. 167°. Benzene and dioxan were purified by refluxing them over, and then distilling them from, sodium.

Apparatus, techniques, symbols used, and methods of calculation have been described

Table 1.
Incremental Kerr effects, refractive indexes, dielectric constants, and densities, for solutions at 25°.

Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations on solutions at 25°).

Solute	Solvent	$\alpha \varepsilon_{1}$	β	γ	δ	$\begin{gathered} \infty P_{2} \\ \text { (c.c.) } \end{gathered}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$	$\mu(\mathrm{D})$ *	μ (D) \dagger	$10^{12} \times\left({ }_{m} K_{2}\right)$
$\mathrm{Ph} \cdot \mathrm{NHAc}$	Benzene	$10 \cdot 9 \ddagger$	$0.231 \pm$	$0 \cdot 051 \ddagger$	0	$312 \ddagger$	$40 \cdot 4 \ddagger$	$3 \cdot 65$ +	$3 \cdot 63 \ddagger$	-45
p - $\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$		$9 \cdot 83+$	$0 \cdot 418+$	$0.393+$	7.71	$438 \ddagger$	$48 \cdot 4 \ddagger$	$4 \cdot 36 \ddagger$	$4 \cdot 35{ }^{\dagger}$	$+53$
Ph NHAc	Dioxan	14.9	0.088	$0 \cdot 111$	$74 \cdot 4$	366	41.3	3.98	3.97	$+107$
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$,,	$12 \cdot 9$	0.339	0.090	118	495	$48 \cdot 9$	$4 \cdot 67$	$4 \cdot 66$	$+280$
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$,"	$16 \cdot 2$	$0 \cdot 192$	$0 \cdot 111$	147	491	47-4	$4 \cdot 66$	$4 \cdot 64$	$+276$
$p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$,"	13.5	0.051	$0 \cdot 094$	$16 \cdot 2$	371	$45 \cdot 1$	3.99	3.97	+18

before. ${ }^{1-3}$ Observations are recorded in Table 1 and results summarised in Table 2. The quintities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indexes, and Kerr constants, respectively, of the solvents and of solutions containing weight fractions w_{2} of solute. The following values apply at 25° to the two solvents:

	ε_{1}	d_{1}	$\left(n_{1}\right)_{\text {D }}$	$10^{7} B_{1}$	$10^{12}{ }_{\text {s }} K_{1}$
Benzene	$2 \cdot 2725$	0.87378	$1 \cdot 4973$	$0 \cdot 410$	0.0756
Dioxan	$2 \cdot 2090$	$1 \cdot 0280$	$1 \cdot 4202$	$0 \cdot 068$	0.0116

Previous Measurements.--The following dipole moments (D) have been recorded (numerals in parentheses being references): acetanilide, 4.01 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 5$); 3.62 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 6$); 3.65 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 4$); 4.02 (in dioxan, 7); 3.97 (in dioxan, 6); 3.5 (in $\mathrm{CCl}_{4}, 8$); acetyl- p-toluidine, 3.74 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 4$); p-chloroacetanilide, 4.32 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 4$); p-bromoacetanilide, 4.36 (in $\mathrm{C}_{6} \mathrm{H}_{6}, 4$).

Discussion

From steric considerations Smith ${ }^{4}$ concluded that in acetanilide there would be six positions of minimum potential energy defined by $\phi=30^{\circ}, 90^{\circ}, 150^{\circ}, 210^{\circ}, 270^{\circ}$, and 330°; ϕ, the angle between the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}-\mathrm{C}_{0 \mathrm{O}}$ and $\mathrm{N}-\mathrm{C}_{\mathrm{CO}}-\mathrm{O}$ planes, is zero for an s-cis-arrangement of the group $\mathrm{Ph}-\mathrm{N}-\mathrm{C}=\mathrm{O}$ (for diagrams and a detailed description of these structures see ref. 4, pp. 4701-4702). Smith calculated, by vector addition of bond and group moments, the theoretical values for acetanilide and for its p-methyl-, p-chloro-, and p-bromoderivatives in various conformations listed in Table 2 of ref. 4. Comparison of Smith's calculated and observed dipole moments shows clearly that structures with $\phi>90^{\circ}$ need not seriously be considered. Within the limits $0<\phi<90^{\circ}$, the magnitude of $\mu_{\text {calc }}$ is relatively insensitive to changes in ϕ, so that, in view of the assumptions underlying these calculations, a more definite specification of ϕ in this range is not possible from dipole moments alone. The purpose of the present work is to examine the computed molar Kerr constants as functions of ϕ and to compare the theoretical molar Kerr constants with those from experiment in order to establish, with greater certainty, the conformations of these compounds as solutes at high dilution in non-polar media. Following Smith, we assume that the moment of acetanilide arises from the addition of an anilinelike component (1.53 D , acting at 48.5° to the $\mathrm{N}-\mathrm{C}_{\mathrm{Ar}}$ bond) and a carbonyl link moment (taken as $\mu_{\text {acetone }}=2.78 \mathrm{D}$), that the amino-group is so disposed as to give the maximum overlap of the nitrogen lone-pair orbital with the benzene-ring π-electrons, and that the nitrogen valency angles are tetrahedral and those of C_{CO} are 120° (the bond angles given

[^0]by Brown and Corbridge ${ }^{9}$ for the acetanilide crystal lead to calculated moments considerably lower than that observed). Bond and group polarisabilities used in the following calculations are: $b_{\mathrm{L}}^{\mathrm{Ph}}=b_{\mathrm{T}}^{\mathrm{Ph}}=1 \cdot 056, b_{\mathrm{V}}^{\mathrm{Ph}}=0 \cdot 672, b_{\mathrm{L}}^{\mathrm{C}=0}=0 \cdot 230, b_{\mathrm{T}}^{\mathrm{C}=0}=0 \cdot 140$, $b_{\mathrm{T}}^{\mathrm{C}}=\mathrm{O}=0.046, b_{\mathrm{L}}^{\mathrm{N}-\mathrm{C}}=0.057, b_{\mathrm{T}}^{\mathrm{N}-\mathrm{C}}=b_{\mathrm{V}}^{\mathrm{N}}-\mathrm{C}=0.069, b_{\mathrm{L}}^{\mathrm{N}-\mathrm{H}}=0.050, b_{\mathrm{T}}^{\mathrm{N}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{N}}-\mathrm{H}=0.083$, $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}=0.099, b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{C}}=0.027, b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064\left(\times 10^{-23}\right.$ c.c., throughout).

Acetanilide and p-Bromoacetanilide as Solutes in Benzene.-The computational procedures are outlined in ref. $3(b)$, pp. 2483-2486. Table 3 lists the polarisability semi-axes calculated for conformations of acetanilide; their locations with reference to the orthogonal

Fig. 1 (b)
axes X, Y, Z (see Fig. 1 (a) and (b); and the calculated dipole moments and molar Kerr constants. Exaltations of polarisability are assumed to be analogous to those found for aniline: ${ }^{\mathbf{1 0}}$ $\Delta b_{\mathrm{XX}}=+0 \cdot 22, \Delta b_{\mathrm{YY}}=-0 \cdot 10, \Delta b_{\mathrm{ZZ}}=-0 \cdot 06$. The dipole moment components in the

Table 3.
Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of acetanilide in benzene.
Direction cosines with

X, Y, and Z directions for any conformation of acetanilide are: $\mu_{x}=1.53 \cos 48.5+$ $\mu^{\mathrm{O}=\mathrm{O}} l_{\mathrm{X}}^{\mathrm{O}=0} ; \mu_{\mathrm{Y}}=\mu^{\mathrm{O}=\mathrm{O}} l_{\mathrm{Y}}^{\mathrm{O}=0} ; \mu_{\mathrm{Z}}=1.53 \sin 48.5+\mu^{\mathrm{C}=\mathrm{O}} l_{\mathrm{Z}}^{\mathrm{O}=0}$, where $l_{\mathrm{X}}^{\mathrm{C}=0}, l_{\mathrm{Y}}^{\mathrm{C}=\mathrm{O}}$, and $l_{\mathrm{Z}}^{\mathrm{O}=0}$ are the direction cosines locating the carbonyl link moment within the co-ordinate system $0 X Y Z$.

With the para-substituted derivatives examined, only p-bromoacetanilide was sufficiently soluble in benzene to produce differences ΔB_{12} large enough to be measured with
${ }^{\circ}$ Brown and Corbridge, Acta Cryst., 1954, 7, 711.
10 Aroney and Le Fèvre, J., 1960, 2161.
reasonable confidence. The calculated values for conformations of this molecule are summarised in Table 4. The polarisability semi-axes for the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{Br}$ bond ($b_{\mathrm{L}}=0.627$,

Table 4.
Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of p-bromoacetanilide in benzene.
Direction cosines with

$b_{T}=0.245, b_{V}=0.220$) were obtained by subtraction of the phenyl group semi-axes from the polarisability specifications for bromobenzene. ${ }^{11}$ In p-bromoacetanilide the μ_{x} component of the calculated dipole moment for any conformation is augmented above that for acetanilide by ($\mu^{\mathrm{C}-\mathrm{Br}}+\mu_{\mathrm{I}}$) where μ_{I} is the " interaction moment." ${ }^{12}$ From Smith and Walshaw's value ${ }^{12}$ of 3.01 D for the dipole moment of p-bromoaniline in benzene, ($\mu^{\mathrm{C}-\mathrm{Br}}+$ $\left.\mu_{\mathrm{I}}\right)=1.77 \mathrm{D}$, and this acts in the $+X$ direction.

The observed quantities being $\infty\left({ }_{m} K_{2}\right)=-45 \times 10^{-12}, \mu=3.65 \mathrm{D}$ (for acetanilide), and $\infty\left(K_{2}\right)=+53 \times 10^{-12}, \mu=4.36 \mathrm{D}$ (for p-bromoacetanilide), it may be inferred that for these substances in benzene solution ϕ is about 80° (i.e., the mean of 74° and 87°). Small changes in the assumed bond angles do not seriously affect the conclusions. If, for example, the nitrogen valency angles are taken as 113°, the calculated values for conformations of acetanilide having ϕ equal to 69° and to 74° are:

Acetanilide, p-Bromoacetanilide, p-Chloroacetanilide, and Acetyl-p-toluidine in Dioxan.The increased solubility of these substances in dioxan and the smallness of $B_{\text {diosan }}$ result in conveniently measurable values of ΔB_{12} from which δ and thence ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$ may, in each case, be readily estimated. Smith and his co-workers ${ }^{12-14}$ have shown that the higher moments observed for aniline, N-methylaniline, and nuclear-substituted anilines arise through hydrogen bonding between an amino-hydrogen atom and an oxygen atom of the dioxan
${ }^{11}$ Le Fèvre and Rao, J., 1958, 1465.
12 Smith and Walshaw, J., 1957, 3217.
18 Few and Smith, $J ., 1949,753,2781$.
${ }^{14}$ Smith, J., 1953, 109.
molecule, and that " an appreciable increase in molecular polarisation, and consequently in apparent dipole moment, accompanies the hydrogen bonding only when an increase in the mesomeric effect can occur, i.e., when it results in an increased donation of electron density from the amino-nitrogen atom to the ring." Thus the differences between the apparent moments in dioxan and in benzene can be attributed to a moment component μ_{d} acting along the 1,4 -axis in the positive X direction (in Fig. 1a), so that, by analogy, the dipole moment components μ_{X} for all conformations of $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NHAc}$ (where $\mathrm{X}=\mathrm{Br}$, Cl , or Me) are $\mu_{x}=1.53 \cos 48.5+\mu^{\mathrm{C}-\mathrm{X}}+\mu_{1}+\mu_{d}+\mu^{\mathrm{C}=\mathrm{O}} l_{\mathrm{X}}^{\mathrm{C}}=\mathrm{O}$. The aggregate values of $\left(\mu^{\mathrm{C}-\mathrm{X}}+\mu_{\mathrm{I}}+\mu_{d}\right)$ follow from the data in ref. 12 as: $+2 \cdot 14(\mathrm{X}=\mathrm{Br}) ;+2 \cdot 18(\mathrm{X}=\mathrm{Cl})$; and $-0.04_{5}(\mathrm{X}=\mathrm{Me})$; for $\mathrm{X}=\mathrm{H}, \mu_{d}=+0.33$ (all in Debye units). For the following calculations the polarisability semi-axes for the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{Cl}$ bond ($b_{\mathrm{L}}=0.422, b_{\mathrm{T}}=0.199$, $\left.b_{\nabla}=0.149\right)$ and for the group $\mathrm{C}_{\mathrm{Ar}}-\mathrm{CH}_{3}\left(b_{\mathrm{L}}=0.219, b_{\mathrm{T}}=0.345, b_{\mathrm{V}}=0.207\right)$ were obtained by subtraction of the phenyl group semi-axes from the polarisability specifications ${ }^{11}$ for chlorobenzene and toluene, respectively. No allowance has been made for any contributions of the associated dioxan molecules to the calculated anisotropic polarisabilities of the structure examined, but this should not be significant-see ref. 15 in which $b_{1}^{\text {dioxan }}=0.76-0.79, \quad b_{2}^{\text {dioxan }}=0.89-0.98, \quad b_{3}^{\text {dioxan }}=0.83-0.87$. The calculated dipole moments for the various conformations of acetanilide and of p-bromoacetanilide (in dioxan) if taken in conjunction with the polarisability semi-axes of Tables 3 and 4, respectively, lead to the theoretical molar Kerr constants listed in Table 5. The

Table 5.
Dipole moments and molar Kerr constants calculated for conformations of acetanilide and p-bromoacetanilide in dioxan.

	Acetanilide		p -Byomoacetanilide	
ϕ	μ (calc.) (D)	$10^{12}{ }_{\mathrm{m}} K$ (calc.)	μ (calc.) (D)	$10^{12}{ }_{\mathrm{m}} K$ (calc.)
0°	$3 \cdot 63$	+722	$5 \cdot 29$	+2788
30	$3 \cdot 86$	+597	$5 \cdot 34$	+2359
60	$3 \cdot 85$	+196	$5 \cdot 03$	+1227
70	$3 \cdot 78$	+56	4.86	+815
80	$3 \cdot 70$	-69	$4 \cdot 64$	+430
90	$3 \cdot 59$	-165	4.39	+105

Table 6.
Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of p-chloroacetanilide in dioxan.

[^1]Table 7.
Polarisabilities, dipole moments, and molar Kerr constants calculated for conformations of acetyl- p-toluidine in dioxan.
Direction cosines with

computed values for p-chloroacetanilide are summarised in Table 6 and for acetyl- p toluidine in Table 7.

The observed $10^{12}{ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$'s are: +107 (acetanilide), +280 (p-bromoacetanilide), +276 (p-chloroacetanilide), and +18 (acetyl- p-toluidine), corresponding to $\phi=66^{\circ}, 85^{\circ}, 83^{\circ}$, and 71°, respectively. We thus conclude that as solutes in dioxan these molecules exhibit ϕ 's in the range $75^{\circ} \pm 10^{\circ}$.

[^0]: ${ }^{1}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{2}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 ${ }^{3}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261 ; (b) Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }^{4}$ Smith, J., 1961, 4700.
 ${ }^{5}$ Le Fèvre and Le Fèvre, J., 1936, 1136.
 ${ }^{6}$ Estok and Sood, J. Phys. Chem., 1962, 66, 1372.
 ${ }_{7}$ Nagakura and Kuboyama, Rept. Inst. Sci. Technol., Univ. Tokyo, 1951, 5, 27.
 ${ }^{8}$ Suzuki, Tsuboi, Shimanouchi, and Mizushima, Spectrochim. Acta, 1960, 16, 471.

[^1]: ${ }^{15}$ Le Fèvre, Sundaram, and Pierens, J., 1963, 479.

